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ABSTRACT
We used simulations with a classical force field to study the transformation under hydrostatic pressure of isolated single-walled nanotubes
(SWNT) from a circular to a collapsed cross section. Small-diameter SWNTs deform continuously under pressure, whereas larger-diameter
SWNTs display hysteresis and undergo a first-order-like transformation. The different behavior is due to the changing proportions in the total
energy of the wall-curvature energy and the van der Waals attraction between opposite walls of the tube.

The study of pressure effects on the structure of single-wall
carbon nanotubes (SWNTs) is a topic of much recent
interest.1 High-pressure experiments on bundles suggest the
occurrence of symmetry-breaking transitions at critical
pressures ranging from 1.5 GPa to 2.1 GPa for laser-grown
tubes (d ≈ 12-14Å)2-4 and at 6.6 GPa for HiPCo tubes (d
≈ 8Å).5 In a previous work,6 we have shown that this
behavior is related to an intrinsic property of isolated
SWNTs, namely, the instability of the circular cross section
at the critical pressure with respect to squashing deforma-
tions. Similar results have been obtained by other authors.7-9
There have been recent proposals to use this property of
isolated SWNTs for building nanoscale pressure sensors.10

In this work, we investigate the deformation in more detail.
A more complex picture emerges: isolated SWNTs show
three qualitatively different behaviors under pressure depend-
ing on the tube diameter, d. For “large” diameters, SWNTs
collapse at a critical pressure, Pd, with a discontinuous change
in volume, in contrast to predictions from elasticity theory
that suggest a continuous (although abrupt) deformation
beyond a critical pressure.8,11,12 We identify the van der Waals
interaction between the opposite walls of the SWNT as the
driving force for this behavior. For “small” diameters, the
transformation is continuous, from a circle to an oval cross
section (with the deformation onset occurring at a pressure,

Pc) and with a gradual change to “racetrack” and “peanut”
shapes as the pressure increases. Finally, for “intermediate”
diameters, the continuous transformation at Pc is followed
by a discontinuous one at Pd.
We perform zero-temperature structural minimizations and

classical molecular dynamics (MD) simulations at 300 K for
SWNTs under hydrostatic pressure. The carbon-carbon
bonding (elastic energy) in the SWNTs is modeled by the
extended Tersoff-Brenner potential.13 Pairwise Lennard-
Jones potentials model the nonbonding van der Waals term.14
The technical aspects of our constant pressure MD simula-
tions are similar to those of Martonak et al.:15 The nanotubes
are immersed in a pressure-transmitting medium of particles
interacting via a repulsive A/r12 potential. Pressure and
viscosity are monitored in a 314-Å3 subunit cell that contains
only medium particles, and the pressure is changed by
varying the strength of the interaction between the medium
particles. The strength of the interaction between medium
particles and the carbon atoms is kept fixed at A ) 130 eV
Å12 for all of our simulations.
MD simulations are performed under periodic boundary

conditions with unit cells of 30-Å width in each of the
directions perpendicular to the tube axis. In the axial
direction, the length depends on the size of the unit cell for
the nanotube in question, but for zigzag tubes we use eight
unit cells and therefore a length of approximately 34 Å. The
number of medium particles in the box varies because of
nanotubes of different radii occupying different proportions
of the total volume, but it was typically around 3 000. The
mass of the medium particles is set at 5 amu.
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To perform zero-temperature structural minimizations of
the enthalpy (H ) U + PV), one needs to define the volume
of the nanotube. There is no rigorous or unique way to
geometrically define the volume of a molecule; however,
this task is greatly facilitated in the case of nanotubes because
of their axial geometry. In particular, zigzag tubes have
polygonal cross sections that allow their cross-sectional areas
to be written as functions of the atomic positions, {RI}, even
if changes in bond lengths and angles are permitted. Once
the volume is thus defined, the contribution to the force on
each ion, I, arising from the PV term of the enthalpy is simply
-P(∂V/∂RI). Therefore, for simplicity, we will focus our
study on zigzag tubes. However, our main conclusions should
be easily generalized for all SWNTs because their mechanical
properties do not vary strongly with chirality. We also note
that a sensible definition of a molecular volume should take
into account a small correction in volume due to the
electronic cloud surrounding the atoms.6 This correction is
neglected in our T ) 0 K minimizations but is naturally
included in the MD simulations. At a given pressure, local
minima of the enthalpy for both the circular and collapsed
nanotube configurations are sought by performing a com-
bination of conjugate gradient and steepest descent enthalpy
minimizations. These minimizations are started from nearby
structural configurations such as the corresponding minimum
enthalpy configurations at lower or higher pressures or those
obtained from finite temperature molecular dynamics simula-
tions.
We use the nudged-elastic-band (NEB) method16 to find

the minimum-enthalpy transformation path between circular
and collapsed geometries for a variety of zigzag SWNTs and

at a variety of pressures. The end points of the NEB
minimization at a given pressure are the SWNTs of circular
and collapsed cross sections for which the enthalpy is a local
minimum (or a local maximum in the case of circular
SWNTs at high pressures). These end points have been
connected by an “elastic band” containing 200 beads. We
note that the transformation path that we calculate is the
transformation path for uniform deformation of a nanotube,
and the enthalpy barriers calculated are the enthalpy barriers
per unit cell for such a uniform deformation. The enthalpy
barrier for uniform deformation is proportional to the length
of the nanotube and is therefore prohibitively large. There-
fore, we do not expect the true minimum-enthalpy deforma-
tion path to be a uniform deformation but rather a deforma-
tion that nucleates locally and propagates along the tube axis
in a highly nonuniform manner. We therefore attach meaning
only to the relative enthalpies of the local minima along the
transformation path and to the existence, or nonexistence,
of enthalpy barriers.
Figure 1a-c shows the enthalpy as a function of pressure

for the (10,0), (13,0), and (19,0) SWNTs, respectively. As
we shall see, these are prototype examples of small-,
intermediate-, and large-diameter tubes. The points plotted
are only those corresponding to structures that are local
minima of the enthalpy. For the (10,0) tube, the curve has
only one branch, thus indicating the existence of a single
stable geometry for each pressure. At P ) Pc, a subtle kink
in the plot indicates the onset of a continuous transformation
between a circular (black dots) and an oval (red squares)
cross section, as indicated in the figure. As the pressure
increases, the cross-sectional area decreases and the oval

Figure 1. Enthalpy vs pressure for the (a) (10,0), (b) (13,0), and (c) (19,0) SWNTs. Black dots indicate a circular cross section, red squares
indicate the oval and collapsed (for the (10,0) SWNT) structures, and the blue triangles indicate the collapsed (peanut-like) structures. Only
points corresponding to structures that are local minima of the enthalpy are plotted in all cases. The straight lines connecting consecutive
points are intended as a guide to the eye. Critical pressures, Pm, Pd and Pc, are indicated by dashed lines. Cross-sectional shapes are shown
at a variety of pressures in all three cases.
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deforms continuously into a racetrack and then into a peanut
shape. For the (13,0) and (19,0) SWNTs, the situation is
qualitatively different. For a certain range of pressures, one
can obtain two metastable structures: a circle or oval and a
collapsed (racetrack or peanut) structure. One can therefore
define three critical pressures, Pm, Pd, and Pc as indicated in
the figure. Pressure Pm marks the onset of metastability of
the peanut shape: at pressures slightly lower than Pm a large
number of enthalpy minimizations were performed, starting
from different initial configurations, but the collapsed
structure always reverted to a circular shape. The critical
pressure, Pd, is the pressure for which the enthalpy of the
two configurations are equal (i.e., for P > Pd the peanut is
the most stable structure) and at which a discontinuous
transformation between circle (or oval) and peanut may
occur. Finally, Pc is the pressure at which the circular shape
becomes unstable with respect to an oval shape, just as in
the small-diameter SWNTs.
These three different behaviors can also be seen from a

PV diagram, shown in Figure 2. The lines indicate the scaled
pressures and volumes of stable or metastable structures.
Different lines for a given SWNT correspond to the different
metastable structures: circle, oval, and peanut. Matching
open symbols indicate points on different branches of the
PV plot that have the same enthalpy. At P ) Pd, a
discontinuous (first-order-like) transformation is predicted
to occur for the (13,0) and (19,0) tubes between these points.

If one neglects the tiny pressure range near Pc where
energy differences were too small to be resolved in our
simulations, the PV curve for the (10,0) SWNT appears to
consist of a single branch, and therefore, as discussed above,
the transformation from circle to oval to peanut is continuous.
The (13,0) and (19,0) SWNTs, however, both have features
of first-order transformations: a discontinuous variation in
volume and a hysteresis loop. For the (13,0) SWNT, the
discontinuous change in volume occurs after a continuous
transformation from a circular to an ovular cross section has
already taken place. For the (19,0) SWNT, there is a
discontinuous transformation directly from a circular cross
section to a peanut cross section and the oval cross section,
which is metastable over a small pressure range at zero
temperature, is unlikely ever to be observed in an experiment.
In Figure 3a, the enthalpy difference, ∆H, (with respect

to the circular configuration) along the minimum enthalpy
transformation paths between the circular and peanut-shaped
configurations of the (13,0) SWNT are plotted. At 4.3 GPa,
the circular configuration (at the far right-hand side of the
plot) is clearly the configuration of minimum enthalpy,
whereas the collapsed structure (on the far left) appears to
be a shallow local minimum. As pressure increases, the local
minimum corresponding to the peanut structure becomes
more pronounced and lowers in enthalpy relative to the
enthalpy of the circle. Furthermore, the circular cross section
gradually changes from a local (and global) minimum to a
local maximum as a new local minimum appears with a
volume that is intermediate between that of the circular and
fully collapsed SWNT. As illustrated for the case of P )
4.445 GPa≈ Pd, this minimum corresponds to a SWNT with
an oval-shaped cross section. As the pressure increases
further, the peanut-shaped SWNT becomes the global
minimum (at Pd) and gradually the barrier between the oval
and the peanut is lowered until, at high pressures, only the
peanut shape is stable. In Figure 3b, the different contribu-
tions to ∆H along the minimum enthalpy transformation path
at P ) 4.445 GPa ≈ Pd are plotted. The elastic (Tersoff-
Brenner) and PV terms make the largest contributions to ∆H,
but at Pd they almost cancel one another so that the small
excess of elastic energy is comparable in magnitude to the
van der Waals energy.
The different behavior of large- and intermediate-diameter

SWNTs can now be understood by recognizing the role of
the van der Waals interaction in stabilizing the collapsed
geometry. Nanotubes have “sticky walls” because of the van
der Waals interaction and, for large-diameter tubes, this
contribution to the energy can be large enough to stabilize
the peanut structure at pressures for which the contribution
to ∆H of the PV term of the deformed structure (P∆V) is
still smaller than the contribution of the elastic energy (∆Uel).
The contribution of the van der Waals energy (∆Uvdw) to
∆H increases approximately linearly with the circumference
of the nanotube and therefore ∆Uvdw per atom varies slowly
with diameter. The proportion of the total number of bonds
that need to bend significantly to deform a nanotube into a
peanut or oval shape decreases as the tube circumference

Figure 2. Volume (scaled by the volume at zero pressure V0) as
a function of pressure (scaled by Pd, or Pc for the (10,0) tube) for
the (10,0), (13,0), and (19,0) nanotubes from zero-temperature
enthalpy minimizations. The lines connect configurations corre-
sponding to local or global enthalpy minima and terminate at
pressures at which a given structure (circle, oval, or peanut) either
becomes unstable or, in the case of the oval structure at pressures
close to Pc, cannot be stabilized for numerical reasons. The dashed
vertical line indicates where a first-order-like structural transforma-
tion is predicted to occur between structures on different branches
of the P-V plot (indicated by matching symbols) for the (13,0)
and (19,0) nanotubes.
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increases so that ∆Uel per atom is significantly larger for
small nanotubes. This means that, as one decreases the
diameter, the ratio of ∆Uvdw to ∆Uel (and to P∆V close to P
) Pd) decreases. As one decreases the diameter, therefore,
the range of pressures for which the van der Waals energy
is sufficient to overcome the excess elastic energy decreases
and Pm gets closer and closer to Pd. For the (10,0) tube, the
range of metastability of the peanut structure below Pd is
too small for us to resolve in our simulations.
To further illustrate the crucial role played by the van der

Waals energy in producing the diameter-dependent behavior
of nanotubes under pressure, we look at the behavior of the
(19,0) tube in the absence of van der Waals interactions.
We perform a series of enthalpy minimizations of the (19,0)
tube under pressure using a potential energy that only
includes the Tersoff-Brenner covalent bonding energy. The
results are presented in Figure 4. It is found that the result
of omitting the Lennard-Jones potential is that the (19,0)
nanotube shows a qualitative behavior that is identical to
small-diameter tubes such as the (10,0). At a certain critical
pressure, Pc , the nanotube begins a continuous deformation
from the circular shape to an oval shape to a fully collapsed
peanut shape. As expected, given that the diameter of the
(19,0) tube is large compared to the range of the van der
Waals potential, the value of Pc does not change significantly
when this interaction is omitted. The peanut structure is no
longer found to be metastable, and therefore the hysteresis
and the existence of a first-order-like transformation disap-
pear. These results are now qualitatively very similar to those
of previous works.5,8,9 The inset of Figure 4b shows that there
is a dramatic change in the shape and volume of the nanotube
within a small pressure range close to Pc and that there is a
tiny enthalpy difference between the circular and deformed
nanotubes over this pressure range. The large decrease in
PV during the initial stages of deformation appears to be
almost entirely canceled by the increase in the elastic energy.

As discussed above, the magnitude of the change in elastic
energy per atom due to bond-bending, ∆Uel, decreases with
increasing diameter. Until the peanut shape is reached, the
change in PV due to deformation is approximately equal to
P∆V because of the large change in volume and the very
small pressure range in which the deformation occurs.
Therefore, the magnitude of ∆(PV) per atom is roughly
proportional to the ratio of the change in the cross-sectional
area of the nanotube to its (approximately constant) perim-
eter, and therefore it increases with diameter.8 This explains
why, in Figure 2, the pressure range of stability of the oval
shape, when scaled by Pd , is seen to decrease with increasing
diameter. For larger diameters, the PV term dominates the
elastic energy more rapidly with changing (P/Pd ) than for
smaller tubes.
Figure 5 shows the diameter dependence of the critical

deformation pressures: they all decrease with increasing
diameter, in agreement with previous results.6-9 Continuum
elasticity theory predicts that Pc should decrease as 1/d3 in
the limit of large d.11,12 From our data between d ) 7 Å and
d) 15 Å, we find a power law 1/d 2.9, in excellent agreement
with that prediction. However, Pm and Pd should go exactly
to zero at finite diameters: for SWNTs with diameters d >
23 Å, the collapsed structure is locally metastable at zero
pressure, and it becomes the ground state for d > 34 Å.17-19
In other words, Pm and Pd should decrease with diameter,
and they should go exactly to zero near d ) 23 Å and d )
34 Å, respectively.
The molecular dynamics simulations show that the above

description is robust under the introduction of finite tem-
peratures and provide extra insight into the different con-
figurations of carbon nanotubes under pressure. In simula-
tions of larger-radius tubes, both circular and deformed cross
sections can be observed near Pd. This is illustrated for the
(16,0) tube in movies 1 and 2 of the Supporting Information.
These movies show a (16,0) tube at P ≈ Pd and T ) 300 K.

Figure 3. (a) Enthalpy difference per unit cell (∆H ) H - Hcircle) as a function of scaled volume V/Vcircle of the (13,0) SWNT at a variety
of pressures along the minimum enthalpy transformation path between circular and collapsed configurations. At each pressure, Hcircle and
Vcircle are the enthalpy and the volume of the (stable or unstable) equilibrium circular configuration for that pressure. (b) Different contributions
to ∆H for the (13,0) SWNT along the lowest enthalpy path between the circular and collapsed configurations at P ) 4.445 GPa, which is
very close to Pd. The inset highlights the total ∆H and the contribution from the van der Waals energy.
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The two movies illustrate the coexistence of the two phases
near the critical pressure. Movie 3 shows a (10,0) SWNT
for P > Pm, illustrating an oval cross section. Notice that,
when symmetry is broken from a circle to an oval, a
multiplicity of ground states appears, each corresponding to
a different orientation of the oval. The dynamics of the tube

at room temperature seems to be dominated by transitions
between these ground states.
In summary, using a combination of zero-temperature

enthalpy minimization and finite temperature molecular
dynamics simulations we have elucidated the nature and
mechanism of the transformation of SWNTs from circular
to deformed cross sections under hydrostatic pressure. The
existence of first-order-like and second-order-like transfor-
mations depending on diameter is yet another manifestation
of the complexity of nanotubes. It would be interesting to
experimentally determine mechanical (e.g., compressibility)
and thermal (e.g., heat capacity) response functions of single
nanotubes to search for signatures of these different types
of structural transformations. The existence of metastable
structures and hysteresis loops for large-diameter tubes may
complicate their use as nanoscale pressure sensors10 because
their structural properties, and therefore their electrical
properties, will not be uniquely defined by the pressure.
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